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Lubrication flows between spherical particles
colliding in a compressible non-continuum gas
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The low-Reynolds-number collision and rebound of two rigid spheres moving in an
ideal isothermal gas is studied in the lubrication limit. The spheres are non-Brownian
in nature with radii much larger than the mean-free path of the molecules. The nature
of the flow in the gap between the particles depends on the relative magnitudes of
the minimum gap thickness, h′o, the mean-free path of the bulk gas molecules, λo,
and the gap thickness at which compressibility effects become important, hc. Both
the compressible nature of the gas and the non-continuum nature of the flow in the
gap are included and their effects are studied separately and in combination. The
relative importance of these two effects is characterized by a dimensionless number,
αo ≡ (hc/λo). Incorporation of these effects in the governing equations leads to a
partial differential equation for the pressure in the gap as a function of time and radial
position. The dynamics of the collision depend on αo, the particle Stokes number, Sto,
and the initial particle separation, h′o. While a continuum incompressible lubrication
force applied at all separations would prevent particle contact, the inclusion of either
non-continuum or compressible effects allows the particles to contact. The critical
Stokes number for particles to make contact, St1, is determined and is found to have
the form St1 = 2 [ln(h′o/l) + C(αo)], where C(αo) is an O(1) quantity and l is a
characteristic length scale defined by l ≡ hc(1 + αo)/αo. The total energy dissipated
during the approach and rebound of two particles when Sto � St1 is also determined
in the event of perfectly elastic or inelastic solid-body collisions.

1. Introduction
This paper deals with the dynamics of the approach and rebound of two spherical

rigid non-Brownian particles in a gas governed by the ideal gas law. Both the
compressible and the non-continuum nature of the gas flow in the gap between the
particles is taken into account. A dimensionless parameter, αo, which characterizes
the relative importance of the two effects is identified. The critical Stokes number for
which the approaching particles just touch one another is determined as a function of
αo. We also present expressions for the energy dissipated in the collision due to viscous
effects in the limit of large Stokes numbers. This study complements previous work
by Sundararajakumar & Koch (1996) on the energy dissipation due to incompressible
lubrication flows during aerodynamic interparticle collisions.

Collisions between airborne particles play an important role in phenomena such as
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coalescence of drops (Hocking & Jonas 1970; Mason 1971; Brazier-Smith, Jennings
& Latham 1972; Pruppacher & Klett 1978; Ochs & Beard 1985), scavenging of
dust particles (Chang, Leong & Stukel 1987), aerosol coagulation (Spielman 1970;
Friedlander 1977; Schmidt-Ott & Burtscher 1982; Alam 1987) and combustion. In
addition, there are industrially important processes involving fluidized beds and
pneumatic transport, where accurate models for the collision dynamics between
particles and between particles and surfaces are required (Koch 1990). In these
models, the macroscopic equations characterizing the particulate phase include terms
representing the exchange of momentum and energy between particles in a collision.
A knowledge of the dependence of these terms on the nature of the surrounding
medium and on fluid–particle interactions is thus essential.

The relative motion of two particles in close proximity to one another under con-
ditions of small Reynolds number is usually modelled using the standard lubrication
theory (Leal 1992), which assumes that the fluid is incompressible and may be treated
as a continuum. This approach however leads to results which do not conform to
what is seen in practice. The standard lubrication resistance to the relative motion
of two spheres along their line of centres is inversely proportional to the separation
distance and this implies that spheres with finite kinetic energy never collide. Hence
in calculations employing the continuum theory, a collision is assumed to have taken
place when the particles come within a specified distance of each other. Such an
approach is useful only if the computed collision efficiencies are relatively insensitive
to the cut-off distance. It has been observed that this approximation leads to sig-
nificant errors for particles or drops with radii larger than about 30 µm (Hocking
& Jonas 1970; Jonas & Goldsmith 1972; Pruppacher & Klett 1978). In addition,
the incompressible continuum theory does not allow for rebound and hence the
sticking efficiency is assigned an arbitrary value. This ad hoc procedure often leads
to erroneous values of the collision and coalescence rate. It should be noted that
viscous forces could reduce or increase the coalescence rate depending on the inertia
of the colliding particles. For small drops/particles the viscous resistance decreases
the collision rate (and hence the coalescence rate). Viscous forces can prevent larger
drops or particles from rebounding and thus increase the coalescence rate.

Many recent theoretical studies have focused attention on collisions between spheres
separated by a thin film of viscous liquid. Davis, Serraysol & Hinch (1986) studied
collisions of deformable and rigid spheres in a compressible liquid. They found that
particles with sufficiently large inertia could rebound without coming into contact.
They also observed that the deformation of the solid surfaces had a stronger influence
on the collision process than did the compressibility of the liquid in the gap. Kytömaa
& Schmid (1992) considered collisions between two equal-sized spheres in a weakly
compressible liquid using a regular perturbation method. The effect of interparticle
attraction has also been studied (Rogers & Davis 1990; Serayssol & Davis 1986) for
both deformable and rigid particles colliding in a liquid.

However, collisions in a gas are very different from those occurring in a liquid.
The dynamic pressure in the gap is not as high in a gas as it is in a liquid and
as a result the particles do not deform significantly before solid-body contact is
achieved. In addition, the density in a gas can change much more than in a liquid.
This raises the possibility that the gas in the gap can be compressed with a smaller
pressure rise than would be required to drive its viscous flow out of the gap. The
flow will deviate significantly from incompressible flow when the pressure required
to drive the gas out of the gap becomes comparable to the bulk pressure. Consider
the case of a collision between two identical spheres moving towards each other with
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equal speeds. Using the scaling of the pressure for incompressible lubrication flow,
p = O(µoUoa/h

′2), h′ being the minimum gap thickness, we can obtain an estimate
of the relevant length, hc, at which compressibility effects become important. This is
given by hc ≡ (2µoUoa/po)

1/2. Here a is the radius of the spherical particle, Uo is a
characteristic particle speed, µo is the bulk viscosity of the gas and po is the bulk
pressure. When the particle separation is comparable to or smaller than hc the use of
incompressible theory in describing the collision process is not justified. Furthermore,
when the gap between the particles becomes comparable to the mean free path of
the molecules, λo, the description of the gas as a continuum breaks down. While
non-continuum effects are usually unimportant for particle collisions in liquids, the
mean free path of the gas molecules is about 0.1 µm under standard atmospheric
conditions. When the separation between aerosol particles becomes comparable to or
smaller than this value, the non-continuum effect has to be taken into account.

Thus we find that a complete description of collisions in a gas requires rederiving the
governing equations to account for the compressible, non-continuum nature of the gas
flow in the gap at small separations. Since compressibility and non-continuum effects
may both be important, it is useful to define a new dimensionless variable, αo ≡ (hc/λo),
denoting the relative importance of the two effects. This parameter increases with
increasing particle radius and relative velocity. For particles of diameter 100µm
colliding with a relative velocity comparable to their terminal velocities, αo ∼ O(1).

Although effects of compressibility on collisions in a gas have not been studied
previously, the problem of incompressible non-continuum flow has been considered
in some previous investigations. Hocking (1973) incorporated the first effects of the
discrete nature of the gas in an analysis of the lubrication flow between two spheres by
using the Maxwell slip condition instead of the conventional no-slip condition at the
particle surfaces. His studies showed that particles with sufficient inertia could come
into contact in a finite time. Hocking used the slip approximation for arbitrary particle
separations, even though it is valid only when the gap thickness is much greater than
the mean free path, i.e. h′/λo � 1. The slip approximation was also used by Ying
& Peters (1989) for calculating the resistivity functions for a two-sphere system and
by Barnocky & Davis (1989) for studying the aerodynamic collision and rebound
of slightly deformable spherical particles in the presence of interparticle forces. A
rough approximation for non-continuum effects has also been included in a study of
Brownian coagulation of aerosols. Alam (1987) studied Brownian coagulation using
a resistivity function that was an interpolation between the continuum flow solution
including hydrodynamic interactions and a free-molecule flow result excluding hy-
drodynamic interactions. Extensive discussions of previous work and of two-particle
collision mechanisms incorporating non-continuum effects (to some extent) may be
found in the books by Pruppacher & Klett (1978) and by Williams & Loyalka (1991).

More recently, Sundararajakumar & Koch (1996) studied the incompressible flow
between colliding spheres when (h′/λo) ∼ O(1). Under conditions of small Mach
number, M ≡ (Uo/c) � 1, the flow in the small gap is governed by the linearized
Boltzmann equation. Here c is the mean thermal speed of the bulk gas molecules.
It was shown that the flow in the gap could be approximated locally as a Poiseuille
flow between two flat plates, as is done in the case of continuum flow. This result
was obtained by introducing the standard lubrication scalings into the Boltzmann
equation. Thus, the pressure profile and the force could be derived by replacing the
continuum Poiseuille flow result with the relationship given by Cercignani & Daneri
(1963) for the flux caused by a pressure gradient in the non-continuum flow between
two (locally) flat plates. The incompressible analysis is valid for moderately large
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particles (diameter in the range 10–50 µm). For larger particles one must consider the
compressible nature of the gas in the gap in addition to non-continuum effects as we
have done in § 2 and § 3.

In this paper, we consider collisions between two identical rigid spheres moving with
equal and opposite velocities in an isothermal strongly compressible gas governed by
the ideal equation of state:

p′Mw = ρ′RT ,

where Mw is an effective molecular weight. Only collisions in which the relative
velocity is along the line of centres are considered. However, both the compressiblity
of the gas and the discrete nature of the flow are taken into account. We assume that
the molecules undergo diffuse reflection at the particle surfaces. Since the terminal
velocities encountered are small, the Mach number is small. In addition, we only
consider cases where (λo/a)� 1 and (hc/a)� 1, so that there exists a gap thickness
that is small enough for the lubrication analysis to hold but large enough to neglect
compressible and non-continuum effects.

For typical aerosol particle collisions, the range of the van der Waals attractions is
smaller than the length scale on which the majority of the viscous dissipation takes
place. Thus, it is attractive to decouple the consideration of the gas flow and the
interparticle forces. We will compute the change in relative velocity of two particles
as they move from an initial separation that is within the lubrication regime but
much larger than λo and hc until they come into contact. Although interparticle
forces are neglected in this study, our result could be coupled with a description of
the adhesive energy between the particles (Dahneke 1973) to obtain a criterion for
coagulation. In addition to computing the resistance to approach of two particles,
we also consider particle rebound under assumptions of perfectly elastic solid-body
collisions or collisions that can be described by a coefficient of restitution.

This paper is organized as follows. Collisions between particles characterized by
Sto � 1, where the Stokes number, Sto ≡ 4mUo/3πµoa

2, denotes the relative impor-
tance of particle inertia and viscous effects, are treated in § 2. In this limit, the particles
move with constant speeds to leading order. We determine the viscous dissipation in
both continuum and non-continuum compressible flows. In § 3, the collision process
is studied for finite values of the particle Stokes number. Finally, the results are
summarized in § 4.

2. Collision between particles with infinite Stokes numbers
In this section, we consider collisions between particles whose inertia is sufficiently

large so that the change in their speed during the collision is small. When the particles
come into contact they are assumed to undergo perfectly elastic solid-body collisions.

Figure 1 is a sketch of the geometry of the two-sphere system. Here h′(t′) is the
minimum distance of separation at any instant of time t′. The two spheres have radii
equal to a. In the lubrication limit the spherical surfaces may be approximated as
paraboloids. This enables us to write the following approximate expression for the
gap thickness H ′(r′, t′):

H ′(r′, t′) = h′(t′) + r′2/a+ O(r′4/a2). (2.1)

The analysis in this section may also be used to treat spheres of different radii a1 and
a2, if a is interpreted as twice the reduced radius, 2a1a2/(a1 +a2). The relative velocity
of the spheres is 2U ′.
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Figure 1. Sketch of the geometry involved in the collision between two spheres. The surfaces can
be modelled as paraboloids and the gap width H ′ at radial position r′ and time t′ is given by
H ′(r′, t′) = h′(t′) + r′ 2/a, where a is the radius of the spheres.

2.1. Compressible continuum flow

The case of continuum flow could be studied as the limiting form for αo � 1 of the
general non-continuum flow analysis that we will present in the following subsection.
However, it is easier to understand conceptually and so we address it first.

Let l be the characteristic gap thickness at which the flow deviates significantly from
continuum incompressible flow. For a compressible continuum flow, l = hc, while it is
a function of αo for a non-continuum flow. We scale all lengths in the z-direction by
l, all distances in the radial direction, r, by (al)1/2 and the axial velocity, u′z , by 2Uo.
The time t′ is scaled by l/(2Uo), the radial velocity, u′r by 2Uo(a/l)

1/2 and the pressure
p′ by po. We will henceforth represent dimensionless quantities by unprimed variables
and will not write down explicitly the time dependence of variables. Using the above
scalings, the dimensionless gap thickness can be written as

H = h+ r2. (2.2)

As in the standard lubrication analysis, the local flow in the gap between the
particles can be approximated as pressure-driven flow through a channel of width
H ′(r′, t′). The inertia of the gas can be neglected provided that

ρoUoh
′
o

µo
� 1,

where ρo is the bulk density of the fluid. Scaling the z-momentum equation shows that
the variation of the pressure and density across the gap is small compared with the
radial variation. Therefore, an equation for the density can be obtained by integrating
the mass conservation equation,

∂ρ′

∂t′
+ ∇ ′ · (ρ′u′) = 0, (2.3)

across the gap to yield

H
∂ρ

∂t
+ 2ρU +

1

r

∂

∂r
(rρj) = 0. (2.4)

In the above equation, U is half of the z-component of the dimensionless relative
velocity of the spheres at time t. U is negative when the spheres approach one another
and is positive when they rebound. Variable j represents the scaled pressure-driven
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radial volumetric flux of fluid in the gap. It is a function of both r and t and is
determined by solving the Stokes equations.

The partial differential equation for the pressure in the gap, (2.4), has to be solved
with the following initial and boundary conditions:

h(t = 0) = ho, (2.5)

lim
r→∞

p = 1, (2.6)

and (
∂p

∂r

)
r=0

= 0. (2.7)

The last equation follows from the symmetry of the problem.
Since the speeds of the colliding particles are constant during approach and

rebound, U = ∓ 1
2
, where the − sign is used for the approach and the + sign for the

rebound. Similarly, during the approach, h is related to t by

h = ho − t.

Once the relevant expression for the flux is known, equations (2.4)–(2.7) can be
solved for the unknown variable p. The starting point in deriving an expression for
the continuum flux is the equation of motion,

ρ′
Du′
Dt′ = ∇ ′p′ + µo∇ ′ · (∇ ′u′) + 1

3
µo∇ ′(∇ ′ · u′). (2.8)

The non-dimensional form of the r- and z-components of the momentum equation
are

∂p

∂r
=
∂2ur

∂z2
+ O(Relh

−3/2
o ) + O(la−1h−3/2

o ),

and
∂p

∂z
= O(la−1h−2

o ) + O(Rella
−1h−1

o ).

Here, Rel = (Uoρol/µo) is the Reynolds number based on the characteristic length
scale l. The effects of compressibility on the momentum equations can be neglected so
long as Rel � 1, ho � 1 and l � a. The terms characterizing the fluid inertia are small
and can be neglected if (Relh

′
o/a)� 1. In addition, the gas may be approximated as

isothermal since the Péclet number is small for small Reynolds number (the Prandtl
number for a gas being an O(1) quantity). Scaling all variables appropriately and
integrating the momentum equations gives us the following expression for the radial
component of the gas velocity in the gap:

ur =
H2

8

dp

dr

[(
2z

H

)2

− 1

]
.

Integrating the radial velocity across the gap thickness gives the flux as a function of
r.

j = −H
3

12

dp

dr
. (2.9)

It should be noted that this result is valid for both compressible and incompressible
continuum flow. Thus the equation governing the pressure profile in the gap is
obtained by substituting (2.9) in (2.4).
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The numerical scheme used to integrate the partial differential equation for the
pressure consisted of a predictor-corrector method in time and finite differences in
radial position. A transformed radial variable, r∗ = r/(r + 1), was used so that the
spatial domain was transformed from (0,∞) to (0, 1). The boundary condition for
the pressure at r = ∞ corresponding to r∗ = 1 could then be implemented easily.
In addition, convergence of the numerical solution was tested by varying the size of
both the time and space grids. It was found that converged results for the force on
the spheres were obtained when 200 or more grid points (for r∗) were used. In all
cases, the numerical calculations were started with large enough values of ho that the
initial flow was nearly incompressible. In obtaining the results in this section, it was
assumed that contact between particles occurred when the gap thickness was reduced
to O(10−3). This leads to a small error in the total viscous dissipation during the
approach.

A regular perturbation analysis in the limit h � 1 can be used to find the first
effects of compressibility. The expression for the pressure has the form

p = 1 + p1 + p2 + p3 + ... (2.10)

where pi(0, t) is order h−2i. Here, 1 + p1 is the pressure for incompressible flow. The
terms in the expansion are given by

p1 =
3

2H2
, p2 = − 9

8H4
− 3

2hH3
,

and

p3 =
27

16H6
+

117

40hH5
+

63

32h2H4
+

33

8h3H3
.

Numerical calculations were conducted with ho = 20. The approximate pressure
distribution given by (2.10) was used as the initial condition. The pressure profile
for the gas in the gap during approach at h = 1 is shown in figure 2. As expected,
compressibility reduces the pressure compared with that which would arise in an
incompressible fluid. For an incompressible lubrication flow, the pressure in the gap
has to be sufficient to drive enough fluid out of the gap to compensate for the volume
swept out by the approaching particles. However, when the gap becomes sufficiently
thin, the gas can compress with a smaller increase in pressure than that required to
drive an incompressible fluid out of the gap.

An asymptotic analysis can be performed in the limit h � 1. For extremely small
gap thicknesses, the radial flux term is negligible because the gas tends to compress
rather than flow out. By equating the first two terms in (2.4), we can obtain the
following expression for the pressure:

p = A(r)/H.

Here, A is a function of radial position that is controlled by the flow occurring when
h ∼ O(1). Figure 3 is a plot of Hp as a function of the scaled radial distance, r, for
various values of h. As h → 0 the curves are seen to approach a limiting curve A(r)
in agreement with the asymptotic expression for p.

By symmetry, the force acting on each sphere, F ′, is in the z-direction. Its value
can be obtained by an integration of the pressure over the surface of the sphere. It
is interesting to see how this compares with the force for the incompressible case.
We define f as the ratio of the actual force to the force the particle would have
experienced at the same separation in an incompressible fluid, namely f = F ′/F ′in,
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Figure 2. The radial pressure profiles in the gap during the approach when h = 1. The solid line is
the result for continuum compressible flow, while the dashed line shows the profile for a continuum
incompressible flow.
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Figure 3. For a compressible continuum flow, H(r, h )p (r) asymptotes to a limiting curve as h→ 0.
All the profiles correspond to the approach. The curve marked (a) corresponds to h = 1.25 and
the others to h = 1, 0.25, 10−2 and 10−4. For values of h = 10−4 and smaller, the profiles essentially
collapse to the curve marked (e).

where F ′in = 6πµoa
2Uo/h

′. The approximate expression for f in the asymptotic limit
h� 1 may be obtained using (2.10) and it has the form

f = 1− 3

4

(
1

h2

)
+

101

40

(
1

h4

)
+ O

(
1

h6

)
. (2.11)

In the limit h� 1, the centreline pressure diverges like h−1, and so we expect the force
to diverge as log h. Figure 4 is a plot of the non-dimensional force, F , as a function of
h during the approach. The asymptotes corresponding to h � 1 and h � 1 are also
shown. The asymptote for h� 1 is seen to match the actual curve very well for h > 5.
In the limit h→ 0, the force has a logarithmic dependence on the gap thickness:

lim
h→0

F ∼ 0.38− 0.8 ln h, (2.12)
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Figure 4. A plot of F as a function of h, during the approach for a compressible continuum
flow. The solid line corresponds to the calculated values. The two dashed lines are the asymptotic
expressions for h� 1 and h� 1. As h→ 0, F diverges logarithmically. This implies that the total
energy dissipated in the approach is finite.

where the constants in (2.12) were chosen to give a best fit to the numerical results at
small h.

Figure 5 is a plot of f, the ratio of the force to the force corresponding to
incompressible flow, as a function of h during the approach and rebound of two
particles. The dotted line is the asymptote given by (2.11) corresponding to h � 1.
The solid line corresponds to the approach while the dash-dot line is the rebound.
The divergence of the force caused by a compressible fluid is weaker than that for
an incompressible fluid, so f → 0 as h→ 0. When the sphere first begins to rebound,
the fluid exerts a force in the same direction as the particle’s motion. This launching
force comes from the expansion of the compressed gas in the gap as the energy that
was stored in the gas during the approach is transferred to the particle. At h ≈ 0.5
the force reverses direction and resists the particle motion.

It is interesting to observe that f becomes greater than 1 at h ≈ 1.8 during
the rebound process, indicating that the resistance to rebound is larger than the
corresponding value for a collision in an incompressible fluid. During the initial
portion of the rebound, the gas in the gap expands more easily than new gas can be
drawn into the gap. As the gap widens and viscous flow becomes feasible, an extra
flux is necessary to make up for the small inward flux at early time. A larger pressure
drop is required to drive this flux than that in an incompressible flow. As the gap
thickness increases further, the compressibility of the gas becomes unimportant and
so f approaches 1 as h becomes much greater than 1.

Figure 6 shows the pressure profiles for three values of h during the rebound.
At h = 0.18, the pressure is larger than 1 due to the compression of the gas that
occurred during the approach. As the particles recede and the gas expands, the
pressure eventually decreases below the atmospheric pressure so that gas is once
again drawn into the gap. It is interesting to note that there are three extrema of the
pressure at h = 0.843. Near the centreline, the pressure is still above 1, because of
the compression that occurred during the approach. However, the gas at r ≈ 0.6 has
already expanded to a subatmospheric pressure. As a result, the gas flux is outward
for r < 0.6 and inward for r > 0.6.
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Figure 5. The variation in f during the course of the collision for a compressible continuum flow.
The solid curve corresponds to the approach and the dash-dot line to the rebound. The dashed line
is the asymptotic expression for f when h� 1. As h→ 0, f → 0 showing that the divergence of the
force is weaker than the h−1 divergence for an incompressible continuum flow.
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Figure 6. The radial pressure profiles in the gap during the rebound for a compressible, continuum
flow. The profiles shown are for h = 0.18, 0.85 and 1.67. When h ≈ 0.85, the pressure in the gap is
less than po, the bulk pressure, and the profile exhibits three extrema.

The force acting on particles colliding in an incompressible fluid diverges like
1/h, so that the work, defined as the integral of F over all separations h, diverges.
However, the compressibility of the gas leads to a weaker growth of the force at small
separations, cf. (2.12), and a convergent result for the work. In general, for arbitrary
αo, the expression for the energy dissipated during the approach can be written as
follows:

W ′
a = 3πµoa

2Uo [ln(h′o/hc) +Ka]. (2.13)

The subscript a denotes the fact that this dissipation occurs during the approach.
The first term is the dissipation that would occur if the force were given by the
incompressible, continuum flow result for all h′ > hc and by zero otherwise. The
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constant Ka, representing the deviation from this crude estimate, is given by

Ka =
1

3πµoa2U ′o

∫
dh′[ F ′ − F ′inH( h′ − hc) ], (2.14)

where the Heaviside step function, H(h′ − hc), is zero if h′ < hc and 1 otherwise.
From the above formulation we expect Ka to be an O(1) number for compressible
continuum flow. Our numerical results indicate that Ka is approximately 1.17 for a
continuum compressible flow. For the general non-continuum flows treated in the
next subsection, Ka will be a function of αo and will diverge as αo → 0.

The work done against the fluid during rebound can be written in a form similar
to (2.13) so that the total energy dissipated in the collision may be expressed as

W ′
T = 3πµoa

2Uo (2 ln(h′o/hc) +K), (2.15)

where

K = Ka +Kr.

Here Kr is a constant similar to Ka appearing in the analogous equation for the
dissipation during rebound. In calculating Kr we have assumed that the collision
process ends when the particles have rebounded back to their initial separations.
Again, for a general non-continuum flow K and Kr will be functions of αo. The value
of Kr for compressible continuum flow is negative (= −1.34) showing that some of
the work done during the approach is stored in the compressed gas and is released
during rebound. An estimate of the magnitude of the energy stored may be obtained
as the difference between Ka and Kr .

2.2. Compressible non-continuum flow

When αo ∼ O(1), the effects of the compressibility and the non-continuum nature of
the gas flow are of equal importance. In this case, we need to redefine the characteristic
gap width, l, at which the standard lubrication analysis needs to be modified. Clearly,
as αo →∞, l → hc and as αo → 0, l → λo. We choose to define l as

l = hc
1 + αo

αo
. (2.16)

Since the gas flow is discrete in nature, it is no longer possible to use the continuum
equations of momentum conservation to derive an expression for the flux. However,
Sundararajakumar & Koch (1996) showed that under conditions of small Mach
number, the momentum equation obtained by averaging the Boltzmann equation for
the gas flow in the gas is unaffected (to leading order) by the compressible nature
of the gas. Thus, the compressible continuum lubrication analysis derived above can
be extended to finite values of αo if the continuum Poiseuille flux relationship is
replaced by a solution of the linearized Boltzmann equation for the pressure-driven
incompressible fluid flow between two plates separated by a distance H . As in the
continuum case, compressibility effects have to be taken into account in the mass
conservation equation. Thus the governing equation for the pressure for a general
compressible non-continuum flow is (2.4) with the value of j modified to account for
the discrete nature of the gas flow.

The pressure-driven mass flux may be written in the form

j = −2H2(1 + αo)

3πρα2
o

Q(δ)
∂p

∂r
, (2.17)
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where δ = (H ′/λ), and λ is the local mean free path based on the instantaneous local
pressure. The flux function Q(δ) is obtained from different expressions depending on
the numerical value of δ. For δ > 10, the effects of non-continuum flow may be
approximated in terms of a Maxwell slip boundary condition on the particle surfaces
and Q(δ) in this range is given by (Hocking 1973)

Q(δ) = 3
4
π(1 + 1

6
δ).

When 0.1 < δ < 10.0 we use the results of a numerical solution of the Bhatnagar–
Gross–Krook (BGK) approximation to the linearized Boltzmann equation presented
by Cercignani & Daneri (1963). In the range δ < 0.1, the expression obtained by
Sundararajakumar & Koch (1996) is used:

Q(δ) = − ln δ + 0.4531.

The boundary conditions for the pressure and the initial condition for h are the same
as for continuum compressible flow, i.e. (2.5)–(2.7).

For the case where the compressibility of the gas is negligible, i.e. αo → 0, Hocking
(1973) derived the following expression for the pressure in the gap including the first
non-continuum effects:

p = 1− 1
12
α2
o ( ln (1 + 6/δ)− 6/δ ). (2.18)

The pressure and force for an incompressible non-continuum flow, valid for all δ was
derived by Sundararajakumar & Koch (1996).

All of the numerical calculations were started from values of ho large enough
so that the initial flow corresponded to nearly incompressible continuum flow. The
pressure distribution in (2.18) was used as the initial condition for p when solving
the partial differential equation. The value of δ at t = 0 was evaluated using the
atmospheric pressure, po, because the pressure change in the gap is small compared to
po at large values of h. However as h becomes close to 1, the pressure change is more
pronounced and the dependence of the mean-free path on p cannot be neglected. We
used the pressure profile obtained in the previous time step to determine the mean-free
paths in the predictor step, and then used the results for the pressure obtained in the
predictor step to evaluate the mean free paths in the corrector step. In this way, δ
and Q(δ) can be evaluated at every radial position.

The results for f, the ratio of the force to the incompressible continuum result,
are plotted in figures 7–10 for different values of the parameter αo. Figures 7 and
8 show the dynamics of approach while figures 9 and 10 show the results for the
rebound. It is evident from the profiles for the approach that the force on the
spheres becomes smaller than the continuum force as h decreases and as the non-
continuum/compressible nature of the gas becomes more important. The divergence
of the actual force is weaker than that of the incompressible continuum force, as
indicated by the fact that f → 0 as h → 0. The force also decreases with decreasing
αo due to the increasing importance of non-continuum effects. Sundararajakumar &
Koch (1996) showed that the divergence of the force for an incompressible non-
continuum flow is ln ln (1/h) as h→ 0, which is weaker than the divergence predicted
for a continuum compressible flow. This is in agreement with our numerical results.

The force tending to push the particles apart during the initial stages of the rebound
diminishes as αo decreases, indicating that the fraction of the initial kinetic energy
stored due to compressibility decreases. The minimum in the profiles during the
rebound, as shown in figures 9 and 10, is also seen to shift upwards and towards
h = 0. These trends arise because, for small αo, the force diminishes as a result of the
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Figure 7. Plots of the scaled force, f(h, αo) = F ′/F ′in during the approach, for different values of αo.
The curves shown correspond to (from the uppermost curve) αo = ∞, 25, 10 and 5. As αo → 0, the
force on the sphere steadily decreases.
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Figure 8. Plots of f(h, αo) during the approach, for (from the uppermost curve marked (a))
αo = 5, 2, 1 and 0.3. The lowest curve (e) is for αo = 0, which corresponds to incompressible
non-continuum flow.

finite mean-free path before compressibility becomes important. In the limit αo → 0,
the flow is quasi-steady and the force during rebound is just the mirror image of that
during approach. The results for αo greater than 50 are within 5% of the continuum
compressible result. For values of αo smaller than 0.3 (figures 8 and 10) the curves
start to collapse and approach the non-continuum incompressible limit. For αo < 0.09,
the results were within 5% of that for αo = 0.

It is interesting to consider the variation of the energy dissipated during the ap-
proach and rebound with varying αo (figures 11 and 12). Consider the total work done,
W ′

T in the form written earlier in (2.15). The asymptotic behaviour of K(αo) in the
two limits has been determined in the previous subsection and in Sundararajakumar
& Koch (1996), and is given by

lim
αo→∞

K(αo) ∼ −0.18,
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Figure 9. Plots of f(h, αo) during the rebound, for αo = ∞, 25, 10 and 5. As h → ∞, all the curves
approach 1. It is clear that the force tending to push the particles apart during the initial stages of
the rebound diminishes with decreasing αo.
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Figure 10. Plots showing f(h, αo) during the rebound process. The curve marked (a) corresponds to
αo = 5, and (e) corresponds to αo = 0. The intermediate curves are results for αo = 2, 1 and 0.3. The
curve for αo = 0 is same as that for the approach plotted in figure 8.

and

lim
αo→0

K(αo) ∼ −2.56 + 2 ln αo.

The ln αo dependence of Ka for small αo reflects the fact that the dissipation is
controlled by the mean-free path of the gas rather than by hc in this limit. One can
also consider only the energy loss during the approach. This loss not only includes
viscous dissipation but also the energy stored due to the compressibility of the gas.
The asymptotic values of Ka(αo) are as follows:

lim
αo→∞

Ka(αo) ∼ 1.17,

and

lim
αo→0

Ka(αo) ∼ −1.28 + ln αo.
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Figure 11. Plot of Ka(αo) as a function of αo. Also shown as dashed lines are the two asymptotes
for non-continuum incompressible (αo � 1) and continuum compressible (αo � 1) flow. The circles
are the numerically calculated values and the solid curve corresponds to (2.19).

For intermediate values of αo, the following approximate expression fits the numerical
data quite well:

Ka(αo) =
1.708 (−1.28 + ln αo )− 1.2424αo + 0.8090α2

o

1.708 + 0.71676αo + 0.6942α2
o

. (2.19)

Figure 11 is a plot of Ka as given by (2.19). The dashed lines indicate the asymptotic
behaviour for αo → 0 and αo → ∞. Ka is seen to increase monotonically with
increasing αo.

Figure 12 is a plot of Kr as a function of αo. The solid curve is a spline fit to the
numerical results while the dotted lines are the asymptotic results. Unlike Ka, Kr is
seen to exhibit a maximum when αo ∼ O(1). This may be explained as the result of
two competing effects. For large values of αo, the gas expands significantly during the
early stages of the rebound, accelerating the relative motion of the particles and thus
reducing the net value of the work done by the spheres on the gas. As αo decreases,
the energy imparted to the sphere by this compressed gas also decreases leading to an
increase in the net work done on the gas. However, at the same time the increasing
non-continuum nature of the flow results in a reduced drag force. Thus as the value of
αo is reduced starting from αo � 1 the net work increases slightly and then decreases
as αo → 0.

Ka includes the energy spent in compressing the gas. Hence one could define a new
variable, Kd = Ka −Kr , which is the energy stored in the compressed gas during the
approach and released during rebound. Like Ka, Kd is a monotonic function of αo.
An approximate expression for Kd obtained by a curve fit is

Kd(αo) =
αo + 0.027α2

o

1.10 + 0.39αo + 0.012α2
o

. (2.20)

The differences between this expression and the numerically calculated values are less
than 5%.
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Figure 12. Plot of Kr(αo), as a function of αo. The solid curve is a spline fit to the actual values,
while the dotted lines are the asymptotes for small and large values of αo. The curve exhibits a
maximum when h ∼ O(1).

3. Dynamics of collisions for finite Stokes number
In this section, we consider the dynamics of collisions between particles with

finite inertia. The incompressible lubrication flow at low Reynolds number is quasi-
steady and so one can decouple the dynamics of the particle from the determination
of the force and express the force at time t as a function of the gap thickness
and relative velocity at time t. This situation applies even to non-continuum flows
(Sundararajakumar & Koch 1996). However, the compressibility of the gas makes the
flow unsteady and one must solve the dynamics of the particle acceleration and the
fluid compression as a coupled problem.

The Stokes number for particles with radii of 10–100 µm whose relative velocity
is comparable with their terminal velocities will be O(100) or greater. For such
situations, the large-Stokes-number asymptote derived in the previous Section will
suffice. However, the relative velocity may be substantially less than the terminal
velocity. For example, a typical relative velocity in particulate fluidization is about
1% of the terminal velocity. Also, if one is interested in aggregation driven by
differential sedimentation, it is the difference in the terminal velocities of two particles
that is relevant.

Whereas the results of the previous Section could be applied to a pair of particles
with different sizes and velocities, we restrict our attention here to particles with
identical radii a and equal and opposite initial velocities ∓Uo. The generalization
to different particle radii and initial speeds is straightforward but would require a
separate calculation because of the coupling between the dynamics of the particles
and that of the gas flow.

The governing equations and the initial and boundary conditions are identical to
those described in the preceding section. However, we must now also solve

Sto
dU

dt
= F, (3.1)

dh

dt
= 2U, (3.2)

for the relative velocity of the particles and the gap thickness as a function of time.
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Here F is the instantaneous drag force acting on a single sphere made dimensionless
by (3πµoa

2Uo/l), and Sto is the Stokes number based on the initial speed. In general,
the flow is not quasi-steady, i.e. F(t) is not proportional to U(t).

3.1. Incompressible continuum flow

We begin by reviewing the dynamics of particles subject to the standard incom-
pressible continuum lubrication force. This provides simple analytical results that
may be used for comparison with the solutions including non-continuum effects and
compressibility.

Equations (3.1) and (3.2) may be combined with the expression for the continuum,
incompressible lubrication force to obtain an equation for dU/dh. Integrating this
equation yields

U =
1

2
− 1

Sto
ln
ho

h
. (3.3)

In addition, F is related to U through

F =
U

2h
. (3.4)

Thus F goes to zero when U goes to zero, ruling out the possibility of a rebound.
Equation (3.3) indicates that the relative velocity of the two particles will be arrested
at a separation

hmin = hoe
−Sto/2, (3.5)

and the particles never come into contact.

3.2. Incompressible non-continuum flow

In this case, the finite mean-free path of the gas allows the particles to achieve
solid-body contact provided that (Sundararajakumar & Koch 1996)

Sto > 2 (ln(h′o/λo)− 1.28).

The fraction of the initial energy dissipated before contact, 1 − e2
va, can be obtained

using

1− e2
va =

4

Sto
(ln (h′o/λo)− 1.28)

(
1− 1

Sto
(ln (h′o/λo)− 1.28)

)
. (3.6)

If the particles undergo a perfectly elastic collision upon contact and

Sto > 4 (ln(h′o/λo)− 1.28),

then the particles will return to their initial separation, h′o, after the collision. The
total energy dissipated during the approach and rebound is

1− e2
v =

8

Sto
(ln(h′o/λo)− 1.28)

(
1− 2

Sto
(ln(h′o/λo)− 1.28)

)
. (3.7)

In (3.6) and (3.7), eva and ev may be interpreted as effective coefficients of restitution for
the approach and for the overall collision when only losses due to viscous dissipation
are considered.

3.3. Compressible continuum flow

Having reviewed the known results for incompressible lubrication flows, we now
consider the coupled dynamics that arise when two particles with finite inertia collide
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Figure 13. Profiles of |U| for a compressible continuum flow as a function of the minimum gap
width, h, for different values of the Stokes number, Sto. The curves labelled (a), (b), (c) and (d)
correspond to Sto = 55.32, 25.32, 15.32 and 9.32 respectively. For Sto = 9.32, the spheres are seen to
rebound without actually coming into contact.

in a compressible gas. We begin our study with the continuum limit and include
the finite mean-free path of the gas in the following subsection. We solve equations
(2.4)–(2.7) with the continuum expression for the flux, (2.9), and the equations relating
h and U to F given by (3.1) and (3.2). All the computations shown are for an initial
separation of ho = 100/7.

Figure 13 shows the variation in the velocity of sphere 1 as a function of h for
various values of Sto. For the case of infinite Sto, |U| = 1/2 for all h. For large values
of the Stokes number (Sto ≈ 55.3 and 25.3), the change in the particle speed is small
and hence the particles collide with a finite velocity and rebound back to their initial
separations. As Sto is decreased, the velocity when the particles rebound back to
their initial separation reduces significantly until for Sto = St2 this velocity becomes
zero. For ho = 100/7, St2 ≈ 14.9. On reducing the Stokes number further, the final
separation between the spheres reduces until the spheres are barely able to collide.
This occurs for Sto = St1 where St1 ≈ 10.3 for ho = 100/7. For lower values of the
Stokes number (< St1) the spheres come to a stop before they can collide with one
another as all the kinetic energy is lost by viscous dissipation.

Figure 13 also illustrates an interesting phenomenon related to the energy stored in
the compressed gas. For Sto > St1 the energy stored in the compressed gas is released
during rebound and hence the velocity during the rebound increases and reaches a
maximum before decreasing due to viscous drag. As the Stokes number decreases, the
difference between this maximum velocity and the velocity immediately after impact
increases and reaches a maximum after which it decreases to zero. The energy stored
in the compressible gas also provides the possibility that the particles can rebound
without actually making solid-body contact. This is seen in the figure for Sto = 9.32.
The particle actually underwent several damped oscillations; however only the first is
evident on the scale of the figure. As the Stokes number decreases further, less energy
is stored in the gas and the amplitude of the rebound decreases.

Barnocky & Davis (1989) have observed particle rebounds without direct physical
contact due to the compressibility of a liquid at sufficiently high Stokes numbers.
Kytömaa & Schmid (1992) argued that such a rebound could not occur if one
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Figure 14. Plot of the velocity as a function of the minimum gap thickness h, during the approach,
for Sto = 9.32, 7.32 and 5.32 (curves marked c, b and a), when αo = ∞. The corresponding results
for incompressible continuum flow are shown as dashed curves. The value of ho is 100/7.

considered only linear compressibility effects and corroborated this argument with an
analysis of (2.4) in the limit of large h. Although the relationship between the pressure
and density in the ideal gas studied here is linear, we have retained higher-order terms
in (2.4) and thereby obtained particle rebound without solid-body contact over a
narrow range of Stokes numbers.

For a fixed value of ho, the flow becomes more nearly incompressible as the
Stokes number, Sto, decreases. This is illustrated in figure 14 which is a plot of the
dimensionless velocity during the approach, as a function of h for small Sto, The
dotted lines are the velocities predicted based on incompressible flow, namely (3.3).
The velocity for the compressible fluid is quite close to the incompressible result for
Sto < 5.32. For Sto = 9.32 the velocity deviates noticeably from the incompressible
result and the minimum distance of approach is less than that predicted by the
incompressible result. As noted before, in this case the spheres were seen to rebound
even though actual contact between the particles did not occur. Another feature
observed in this figure is that for very small Sto, the minimum distance of approach
is slightly greater than that predicted by the incompressible theory.

We also consider collisions in which there is a solid-body energy loss. We assume
that any surface deformation that may occur does not have a substantial influence on
the viscous dissipation. The energy loss due to the solid-body collision is modelled in
terms of a coefficient of restitution, es. The only change required in our computational
algorithm is that the velocity immediately after impact is now −es times the velocity
just before collision. We performed numerical calculations for ho = 14.28, Sto = 20,
and a wide range of es. The fraction of the initial kinetic energy of the two particles
lost during the collision is plotted as a function of es in figure 15. We also present the
fractional energy loss due to the viscous dissipation during the approach and rebound
and the loss due to the solid-body collision. Although the viscous loss when es = 1 is
nearly 53%, the total fractional energy loss goes to 1 only when es is less than 0.2.
The total energy loss does not increase as rapidly as one would predict by linearly
superimposing the viscous and solid-body energy losses. This is because the smaller
rebound velocity for the particles with smaller es causes less viscous dissipation. In
addition, the energy stored in compression of the gas during the approach can aid in
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Figure 15. The fraction of the initial kinetic energy lost in the collision process, plotted as a function
of es for the case Sto = 20, ho = 14.28 and αo = ∞. The solid line represents the total energy lost,
the dotted line is the energy lost due to viscous dissipation during the approach, the dashed line is
the loss during impact and the dash-dot line is the energy lost during rebound.

the rebound of the particles and this effect becomes more important with decreasing
es.

3.4. Compressible non-continuum flow

We now consider the general case in which both the compressibility and finite mean-
free path of the gas are important and the particles have finite inertia. The equations
governing this case are the same as those described in the previous subsection except
that the expression for j is given by (2.7). As αo → 0, the results reduce to the
incompressible case treated in § 3.2.

Figure 16 shows the variation of the particle velocity with gap thickness for
Sto = 15.3, h′o/hc = 14.28, and different values of αo. We have presented the results in
terms of h/ho so that we can compare near-continuum and strongly non-continuum
flows in the same plot. The dashed line corresponds to the αo → ∞ asymptote, while
the solid lines are for αo = 10, 2 and 0.8. At αo → ∞, only the compressibility of
the gas places a finite limit on the energy dissipation due to viscous force. As αo
decreases, however, non-continuum effects also decrease the lubrication force leading
to less energy dissipation during the approach. It may be seen in figure 16 that these
non-continuum effects are important primarily at small gap thicknesses. At large h′,
the lubrication flow approaches the continuum incompressible limit. As αo decreases,
the maximum in the velocity during the rebound decreases.

Figure 17 shows the fraction of the initial particle energy lost during the approach
for collisions with h′o/hc = 14.28 and αo = 0.8, 2, 10, and ∞ as a function of Sto. It can
be seen that the energy loss decreases with increasing αo and so does the value of St1

at which the particle’s kinetic energy is completely dissipated at the point of contact.
Figure 18 is a plot of St1 as a function of αo for h′o/hc = 14.28. The circles

correspond to the numerical calculations. The values of St1 were calculated using
a bisection approach with an error of less than 5%. For large values of αo, the
numerical results approach the asymptote determined in the previous subsection for
continuum compressible flow, i.e. αo = ∞. The dot-dash curve for small αo is the
incompressible, non-continuum flow asymptote obtained using the force expressions
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Figure 16. The variation in |U| as a function of h and αo during approach and rebound for the
case Sto = 15.32 and ho = 14.28. The solid curves labelled (a), (b) and (c) correspond to αo = 0.8, 2
and 10 respectively. The asymptote corresponding to αo = ∞ is shown as a dashed curve.
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Figure 17. Plot showing the fractional energy lost due to viscous effects during the approach as a
function of Sto for h′o/hc = 14.28, αo = 0.8, 2 and 10, (a), (b), (c) respectively. The dot-dash curve is
the asymptote approached as αo →∞.

in Sundararajakumar & Koch (1996). It is clear that the calculated values are quite
close to the incompressible asymptote for αo < 2. We note that St1 goes to zero as
αo → 0 because we have held h′o/hc fixed but allowed h′o/λo to approach zero.

An approximate criterion to determine St1 for an arbitrary value of αo and h′o can
be easily deduced based on simple physical arguments. From the results for infinite
Stokes number it is clear that for h � 1, the flow is essentially incompressible. So
we assume that the force for h > 1 may be approximated using the incompressible
continuum result while the force for h 6 1 is a constant and equal to that at h = 1.
The critical Stokes number obtained with this simplistic force law is

St1 = 2 (ln (h′o/l) + 4).

Although the reasoning employed above is qualitatively correct, the number 4 is not
accurate and is in fact a crude estimate of the O(1) constant, which we denote by
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Figure 18. The minimum Stokes number for impact to occur, St1, shown here as a function of
αo for ho = 14.28. The dashed line at large αo corresponds to the asymptote for compressible,
non-continuum flow. The dashed curve for small αo is obtained from the force expressions given in
Sundararajakumar & Koch (1996). For small values of αo, the actual results lie quite close to the
incompressible predictions.

C , that is sensitive to the flow at small h and is virtually unaffected by the flow
conditions at large h. Thus, it is independent of ho and may be treated as a function
of αo alone. The expression for St1, then has the form

St1 = 2 ( ln ho + C(αo) ) (3.8)

where the function C(αo) can be found by solving the diffential equations for a
fixed value of ho, which satisfies ho � 1, so that the initial flow is incompressible
and continuum. Our results show that C(∞) ≈ 2.59 and from (3.6) we find that
C(0) ≈ −1.28. Figure 19 is a plot of C(αo) as a function of αo. The solid line is a fit
to the numerically calculated values and is given by

C(αo) = −1.28 + αo
1 + 1.53 αo

0.18 + 0.76 αo + 0.39 α2
o

. (3.9)

The dashed line corresponds to the asymptote as αo → ∞. The circles represent
the numerically calculated values. Equations (3.8) and (3.9) provide a fully analytic
criterion for the critical Stokes number for particle–particle contact to occur. In many
cases, this may also constitute the criterion for particle coagulation.

4. Summary and conclusions
This paper complements the previous work by Sundararajakumar & Koch (1996)

on the energy dissipation due to lubrication flows during aerodynamic interparticle
collisions. We have shown that collisions in a gas are qualitatively different from those
occurring in liquids. Both the compressible and non-continuum nature of the gas need
to be included in an accurate description of the collision process. Compressibility
becomes important when the pressure drop between the particle surfaces (across the
gap) becomes comparable to the atmospheric pressure. Non-continuum effects have
to be included when the gap thickness is smaller than or comparable to the mean-
free path of the bulk gas. The dimensionless parameter αo characterizes the relative
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Figure 19. Figure showing C(αo) given by (3.8) as a function of αo. The dashed line is the
asymptote corresponding to αo = ∞. The numerically calculated values are shown as circles.

importance of these two effects. A partial differential equation which incorporates
both these effects is derived along with associated initial and boundary conditions.

In § 2, we considered collisions between particles characterized by large values of the
Stokes number. Both compressibility and non-continuum effects on the dynamics of
the collision process were studied separately as well as together. In the limit Sto →∞
the collision dynamics depends only on αo. Expressions for the energy dissipated
during the rebound and also the energy stored in the compressed gas were obtained
from numerical results, cf. (2.19) and (2.20). These can be used to find the fractional
energy loss due to viscous dissipation for large values of Sto, when the change in the
particle velocities during the course of collision is small.

Collisions between equal-sized spheres characterized by finite values of Sto were
then studied in § 3. In the presence of compressibility, the gas flow is not quasi-
steady. The dynamics are found to depend on three parameters: αo, Sto and the initial
separation. When the Stokes number is very small, the behaviour is similar to that
predicted by incompressible theory as was demonstrated (figure 14) for the particular
case when α = ∞. This observation however holds for all values of αo as long as
the Stokes number is small. As the Stokes number increases, compressibility effects
become more important. In fact, for a certain range of Sto, the spheres are seen to
rebound without actually coming into contact. This tendency to rebound vanishes in
the limit αo → 0 in which non-continuum effects dominate. A result for the minimum
Stokes number, St1, for actual contact to occur between the spheres, (3.9), was then
derived. Whereas the primary effect of compressibility in a liquid is to cause rebound,
the primary effect in a gas is to decrease the lubrication resistance and allow contact
to occur, provided the particle Stokes number is sufficiently large. Thus, we find that
contact is possible even without non-continuum effects.

In our analysis we neglected interparticle forces between the spheres. If we consider
small particles with low inertia (for example particles with Stokes numbers slightly
less than St1), van der Waals attraction could lead to particle contact. Schmidt-Ott
& Burtscher (1982) studied the effects of van der Waals forces on spherical aerosol
particles and found that these are most effective in promoting coagulation between
particles with radii of about 0.01 µm or less. For larger particles retardation effects
were observed to decrease the enhancement factor. In the case of aerosol particles
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with radii in the range 10–100 µm, the dispersion forces are expected to be small
compared to the lubrication force and it seems likely that these forces play a part
only after the viscous effects have almost brought the particles to a stop. It is thus
expected that these forces will have a noticeable effect only in a small portion of the
parameter space.

This work was supported by the US Environmental Protection Agency under grant
number R81-9761-010.
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